Investigating Effects of Structural Deformation Regimes on Mineralization Distributions in Fluid-Saturated Rocks: Computational Simulation Approach through Generic Models

Author:

Zhao Chongbin12,Liu Qibo12

Affiliation:

1. Computational Geosciences Research Centre, Central South University, Changsha 410083, China

2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China

Abstract

Structural deformation regimes in the upper crust of the Earth can have significant effects on the distributions of pore-fluid flow in existing fissured and fractured zones, which are surrounded by fluid-saturated porous rocks. Based on the modern mineralization theory, mineralization distributions in ore-forming systems depend strongly on the distributions of pore-fluid flow velocity. Therefore, different structural deformation regimes associated with mineralization systems can remarkably affect mineralization distributions in existing fissured and fractured zones. This article utilizes a computational simulation approach, which is rigorously developed on the basis of fundamental scientific laws and principles, to solve coupled rock deformation, porosity–permeability evolution and pore-fluid flow problems, which are deeply involved in rock deformation driven mineralization systems. In particular, the porosity and permeability variations, which are caused by rock deformation, and often neglected in the previous studies of solving mineralization problems, are explicitly considered in the computational simulation approach of this study. The proposed approach is verified through a benchmark problem and, moreover, it was employed to examine how different structural deformation regimes can affect the mineralization distributions in existing fissured and fractured zones within the surrounding fluid-saturated porous rocks through using a generic model, which can be viewed as a representation of a generalized and simplified geological model. Main results obtained from this study have demonstrated the following conclusions: (1) consideration of porosity–permeability variations can have significant impacts on the computational simulation solutions of coupled rock deformation, porosity–permeability evolution and pore-fluid flow problems in fluid-saturated porous rocks; (2) different structural deformation regimes can have a significant effect on the mineralization enrichment distributions in ore-forming systems consisting of fluid-saturated porous rocks; (3) there are two favorable mineralization enrichment environments associated with compressional and extensional deformation regimes in ore-forming systems involving permeable fractured zones or faults.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3