Towards the Chemical Analysis of Diatoms’ Silicon Storage Pools: A Differential Centrifugation-Based Separation Approach

Author:

Reichelt Tobias1,Bode Tobias1,Jordan Paul-Felix1,Brunner Eike1ORCID

Affiliation:

1. Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany

Abstract

Diatoms are unicellular algae and occur ubiquitously in almost every marine and freshwater habitat on earth. They produce intricately structured cell walls, which mainly consist of amorphous silica. To synthesize their cell walls, diatoms take up monosilicic acid from the environment and store it. These silicon storage pools (SSPs) can exceed the solubility of silicic acid by one to two orders of magnitude, as observed in various diatom species. However, their chemical composition and cellular localization has not yet been elucidated. It is suggested that SSPs may consist of stabilized aggregates such as pre-condensed silica particles or silica-containing vesicles. Isolation protocols for SSPs without significant chemical modification are required to prove such hypotheses. A critical issue is the efficient separation of components of the SSPs from cell wall fragments or artefacts, which may interfere with analytical methods targeting silicon. To this end, a comparative study was performed on exponentially grown cells and extracted, purified cell walls (biosilica) to observe the sedimentation behavior after lysis. Cell cultures were lysed by bead beating and then fractionated by differential centrifugation. The obtained fractions were analyzed for total silicon content (tSi) using molybdenum blue assay (MBA) after alkaline treatment. It was revealed that cell wall fragments are almost absent in fractions above 1000 × g. Compared with biosilica, a significantly higher silicon concentration is found in lysed cell pellets after centrifugation at moderately high forces. The differences correspond to a few percent of total cellular silicon, which are assumed to be part of SSPs. Only relatively low amounts of silica/silicic acid remain in the supernatant at high centrifugal forces. This indicates that SSPs are mainly present in larger aggregates that sediment at lower centrifugal forces. According to Stokes’ law, only silica particles below ca. 25 nm radius would remain in the final supernatant. This leads to the conclusion that SSPs must mainly consist of larger silica particles and/or are associated with larger compartments/aggregates.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference72 articles.

1. The life of diatoms in the world’s oceans;Armbrust;Nature,2009

2. Phaeodactylum tricornutum: A diatom cell factory;Butler;Trends biotechnol.,2020

3. Causes, human health impacts and control of harmful algal blooms: A comprehensive review;Sonak;Environ. Pollut. Prot.,2018

4. Diatoms: A fossil fuel of the future;Levitan;Trends biotechnol.,2014

5. Merz, C.R., and Main, K.L. (2014, January 14–19). Microalgae (diatom) production—The aquaculture and biofuel nexus. Proceedings of the 2014 Oceans—St. John’s, St. John’s, NL, Canada.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3