Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks

Author:

Wu Zhi,Du Xiao,Gu Wei,Ling Ping,Liu Jinsong,Fang Chen

Abstract

Micro-phasor measurement unit (μPMU) is under fast development and becoming more and more important for application in future distribution networks. It is unrealistic and unaffordable to place all buses with μPMUs because of the high costs, leading to the necessity of determining optimal placement with minimal numbers of μPMUs in the distribution system. An optimal μPMU placement (OPP) based on the information entropy evaluation and node selection strategy (IENS) using greedy algorithm is presented in this paper. The uncertainties of distributed generations (DGs) and pseudo measurements are taken into consideration, and the two-point estimation method (2PEM) is utilized for solving stochastic state estimation problems. The set of buses selected by improved IENS, which can minimize the uncertainties of network and obtain system observability is considered as the optimal deployment of μPMUs. The proposed method utilizes the measurements of smart meters and pseudo measurements of load powers in the distribution systems to reduce the number of μPMUs and enhance the observability of the network. The results of the simulations prove the effectiveness of the proposed algorithm with the comparison of traditional topological methods for the OPP problem. The improved IENS method can obtain the optimal complete and incomplete μPMU placement in the distribution systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3