Measurement of Water Velocity in Gas–Water Two-Phase Flow with the Combination of Electromagnetic Flowmeter and Conductance Sensor

Author:

Yang Qiu-Yi,Jin Ning-DeORCID,Zhai Lu-ShengORCID,Ren Ying-Yu,Yu Chuang,Wei Ji-Dong

Abstract

A method to measure the superficial velocity of the water phase in gas–water flow using an electromagnetic flowmeter (EMF) and rotating electric field conductance sensors (REFCSs) is introduced in this paper. An electromagnetic flowmeter instrument factor model is built and the correlation between electromagnetic flowmeter output and gas holdup in different flow patterns are explored through vertical upward gas–water flow dynamic experiments in a pipe with an inner diameter (ID) of 20 mm. Water superficial velocity is predicted based on pattern identification among bubble, churn, and slug flows. The experimental results show that water superficial velocity can be predicted fairly accurately for bubble, churn, and slug flows with a water cut higher than 60% (absolute average percentage deviation and absolute average deviation are 4.1057% and 0.0281 m/s, respectively). The output of the electromagnetic flowmeter is unstable and invalid in slug flows with a water cut below 60% due to the non-conducting gas slug is almost filling the pipe. Therefore, the electromagnetic flowmeter is not preferred to be used in such conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3