Low Computational Burden Predictive Direct Power Control of Quasi Z-Source Inverter for Grid-Tied PV Applications

Author:

Abid Abderahmane1,Bakeer Abualkasim2ORCID,Zellouma Laid1,Bouzidi Mansour3ORCID,Lashab Abderezak4ORCID,Rabhi Boualaga5

Affiliation:

1. LEVRES Laboratory, Department of Electrical Engineering, El-Oued University, El-Oued 3900, Algeria

2. Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

3. Department of Electronics and Communications, Ouargla University, Ouargla 30000, Algeria

4. Center for Research on Microgrids (CROM), Aalborg University, 9220 Aalborg, Denmark

5. Department of Electrical Engineering, Biskra University, Biskra 7000, Algeria

Abstract

This paper proposes a simplified predictive direct power control for the grid-tied quasi Z-source inverter. The proposed control implements a model predictive control structure to achieve the maximum obtainable power from the collected PV source. The power delivered to the grid is managed to compensate for the reactive power and, as needed, to ensure the grid’s stability. A predictive power model for a quasi Z-source inverter is developed in which the proposed control can operate with a fixed switching frequency without a weighting factor. The simplified space vector modulation uses the three appropriate switching vectors that are selected and applied using precalculated switching times during each switching period, in which the required switching vectors are determined only from one sector in the space vector diagram, taking all of the information of the other sectors, which leads to reducing the computational burden. Simulation results and comparative study are used to confirm the proposed control performance for the grid-tied quasi Z-source inverter capable of tracking and generating the maximum power from PV with fast-tracking dynamics, ensuring the ac voltage desired, and better tracking of the active and reactive power reference with the lowest power ripple. The grid current harmonics were tested and conformed to the IEEE-519 standard. Additionally, the proposed simplified PDPC is experimentally validated using the Hardware-in-the-Loop emulator and the C2000TM-microcontroller-LaunchPadXL TMS320F28379D kit, establishing the usability and good result of our proposed control approach in terms of requirements.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3