Quantitative Characterization of Excess Pressure Gradient in the Upper Interval of Es4 Member of Dongying Depression and Its Indicative Significance for Oil Migration and Accumulation

Author:

Zhao Wen,He Sheng,Wang Yongshi,Wang Xiao,Jia Guanghua,Guo Xiaowen,Qiu Yibo,Chen Jiaxu

Abstract

Excess pressure is the main driving force of oil migration in the source-reservoir system of overpressured petroliferous basins. It can reflect the change in driving force for oil migration and its influence on oil accumulation in overpressure transport layers. The drilling stem test (DST) data, well logging data, and seismic velocity data are used to describe the plane distribution of the excess pressures in the Es4s member of the Dongying Depression. Then, the values and directions of the excess pressure gradient, which can indicate oil migration and accumulation, are calculated based on the plane distribution of the excess pressure in the Es4s member of the Dongying Depression. The results suggest that overpressure is widely developed in the Es4s member of the Dongying Depression, and the excess pressure gradually decreases from the center to the edge of each sag, while the variation in the excess pressure gradient is characterized by “low-high-low” in a circular band around the sags. The excess pressure in the sag areas exceeds 15 MPa, but the excess pressure gradient is mainly between 0 and 1 MPa/km. The excess pressure in the northern steep slope zone of the Lijin sag and the northern steep slope zone of the Minfeng sag are less than 15 MPa, while the excess pressure gradient ranges from 1 to 7 MPa/km. The excess pressure in the central anticline belt and the gentle slope belt in the south of the Niuzhuang sag are between 0 and 15 MPa, and the excess pressure gradient is from 0 MPa/km to 2 MPa/km. From geochemical evidence, local oil migration directions indicated by the excess pressure gradient are consistent with those indicated by the ratio parameters of carbazole compounds in crude oil samples, indicating that the direction of the excess pressure gradient can indicate the dominant direction of oil migration driven by excess pressure, and the oil from the Es4s source rock is mainly distributed in the areas with a high excess pressure gradient or the areas with a low excess pressure gradient and low excess pressure (area II).

Funder

the National Major Science and Technology Projects of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3