High Load Compression Ignition of Wet Ethanol Using a Triple Injection Strategy

Author:

Gainey BrianORCID,Yan Ziming,Gandolfo John,Lawler BenjaminORCID

Abstract

Wet ethanol is a biofuel that can be rapidly integrated into the existing transportation sector infrastructure and have an immediate impact on decarbonization. Compared to conventional hydrocarbon fuels, wet ethanol has unique fuel properties (e.g., short carbon chain, oxygenated, high heat of vaporization, no cool-flame reactivity), which can actually improve the efficiency and engine-out emissions of internal combustion engines while decarbonizing. In this work, wet ethanol 80 (80% ethanol, 20% water by mass) was experimentally studied at high loads under boosted conditions in compression ignition to study the tradeoffs in efficiency and emissions based on boosting and injection strategies. Specifically, this work explores the potential of adding a third, mixing-controlled injection at high loads. The results indicate that adding a third, mixing-controlled injection results in combustion stabilization at high loads, where the peak pressure limit of the engine is a constraint that requires combustion phasing to retard. However, since the heat of vaporization of wet ethanol 80 is ~6% of its lower heating value, evaporation of fuel injected near top dead center imposes a thermodynamic efficiency penalty by absorbing heat from the working fluid at a time in the cycle when adding heat produces net work out. Additionally, the mixing-controlled injection increases NOx emissions. Therefore, the amount of fuel injected in the mixing-controlled injection should be limited to only what is necessary to stabilize combustion. Ultimately, by using wet ethanol 80 in a triple injection strategy, a load of 22 bar IMEPn is achieved with a net fuel conversion efficiency of 42.2%, an engine-out indicated specific emissions of NOx of 1.3 g/kWh, and no measurable particulate matter, while maintaining a peak cylinder pressure below 150 bar.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3