Development of An Analytical Method for Design of Electromagnetic Energy Harvesters with Planar Magnetic Arrays

Author:

Amjadian MohsenORCID,Agrawal Anil. K.,Nassif Hani H.

Abstract

In this paper, an analytical method is proposed for the modeling of electromagnetic energy harvesters (EMEH) with planar arrays of permanent magnets. It is shown that the proposed method can accurately simulate the generation of electrical power in an EMEH from the vibration of a bridge subjected to traffic loading. The EMEH consists of two parallel planar arrays of 5 by 5 small cubic permanent magnets (PMs) that are firmly attached to a solid aluminum base plate, and a thick rectangular copper coil that is connected to the base plate through a set of four springs. The coil can move relative to the two magnetic arrays when the base plate is subjected to an external excitation caused by the vehicles passing over the bridge. The proposed analytical model is used to formulize the magnetic interaction between the magnetic arrays and the moving coil and the electromechanical coupling between both the electrical and mechanical domains of the EMEH. A finite element model is developed to verify the accuracy of the proposed analytical model to compute the magnetic force acting on the coil. The analytical model is then used to conduct a parametric study on the magnetic arrays to optimize the arrangement of the PM poles, thereby maximize the electrical power outputted from the EMEH. The results of parametric analysis using the proposed analytical method show that the EMEH, under the resonant condition, can deliver an average electrical power as large as 500 mW when the PM poles are arranged alternately along the direction of vibration for a peak base acceleration of 0.1 g. A proof-of-concept prototype of the EMEH is fabricated to test its performance for a given arrangement of PMs subjected to vibration in both the lab and field environments.

Funder

United States Department of Transportation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3