Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering

Author:

Malakar SouravORCID,Goswami Saptarsi,Ganguli Bhaswati,Chakrabarti Amlan,Roy Sugata Sen,Boopathi K.,Rangaraj A. G.

Abstract

Accurate short-term solar forecasting is challenging due to weather uncertainties associated with cloud movements. Typically, a solar station comprises a single prediction model irrespective of time and cloud condition, which often results in suboptimal performance. In the proposed model, different categories of cloud movement are discovered using K-medoid clustering. To ensure broader variation in cloud movements, neighboring stations were also used that were selected using a dynamic time warping (DTW)-based similarity score. Next, cluster-specific models were constructed. At the prediction time, the current weather condition is first matched with the different weather groups found through clustering, and a cluster-specific model is subsequently chosen. As a result, multiple models are dynamically used for a particular day and solar station, which improves performance over a single site-specific model. The proposed model achieved 19.74% and 59% less normalized root mean square error (NRMSE) and mean rank compared to the benchmarks, respectively, and was validated for nine solar stations across two regions and three climatic zones of India.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3