Abstract
The life cycle of leaves, from sprout to senescence, is the phenomenon of regular changes such as budding, branching, leaf spreading, flowering, fruiting, leaf fall, and dormancy due to seasonal climate changes. It is the effect of temperature and moisture in the life cycle on physiological changes, so the detection of newly grown leaves (NGL) is helpful for the estimation of tree growth and even climate change. This study focused on the detection of NGL based on deep learning convolutional neural network (CNN) models with sparse enhancement (SE). As the NGL areas found in forest images have similar sparse characteristics, we used a sparse image to enhance the signal of the NGL. The difference between the NGL and the background could be further improved. We then proposed hybrid CNN models that combined U-net and SegNet features to perform image segmentation. As the NGL in the image were relatively small and tiny targets, in terms of data characteristics, they also belonged to the problem of imbalanced data. Therefore, this paper further proposed 3-Layer SegNet, 3-Layer U-SegNet, 2-Layer U-SegNet, and 2-Layer Conv-U-SegNet architectures to reduce the pooling degree of traditional semantic segmentation models, and used a loss function to increase the weight of the NGL. According to the experimental results, our proposed algorithms were indeed helpful for the image segmentation of NGL and could achieve better kappa results by 0.743.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献