Deep Learning for Feature-Level Data Fusion: Higher Resolution Reconstruction of Historical Landsat Archive

Author:

Chen Bin,Li JingORCID,Jin Yufang

Abstract

Long-term record of fine spatial resolution remote sensing datasets is critical for monitoring and understanding global environmental change, especially with regard to fine scale processes. However, existing freely available global land surface observations are limited by medium to coarse resolutions (e.g., 30 m Landsat) or short time spans (e.g., five years for 10 m Sentinel-2). Here we developed a feature-level data fusion framework using a generative adversarial network (GAN), a deep learning technique, to leverage the overlapping Landsat and Sentinel-2 observations during 2016–2019, and reconstruct 10 m Sentinel-2 like imagery from 30 m historical Landsat archives. Our tests with both simulated data and actual Landsat/Sentinel-2 imagery showed that the GAN-based fusion method could accurately reconstruct synthetic Landsat data at an effective resolution very close to that of the real Sentinel-2 observations. We applied the GAN-based model to two dynamic systems: (1) land over dynamics including phenology change, cropping rotation, and water inundation; and (2) human landscape changes such as airport construction, coastal expansion, and urbanization, via historical reconstruction of 10 m Landsat observations from 1985 to 2018. The resulting comparison further validated the robustness and efficiency of our proposed framework. Our pilot study demonstrated the promise of transforming 30 m historical Landsat data into a 10 m Sentinel-2-like archive with advanced data fusion. This will enhance Landsat and Sentinel-2 data science, facilitate higher resolution land cover and land use monitoring, and global change research.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3