Importance Sampling in the Presence of PD-LGD Correlation

Author:

Metzler Adam,Scott Alexandre

Abstract

This paper seeks to identify computationally efficient importance sampling (IS) algorithms for estimating large deviation probabilities for the loss on a portfolio of loans. Related literature typically assumes that realised losses on defaulted loans can be predicted with certainty, i.e., that loss given default (LGD) is non-random. In practice, however, LGD is impossible to predict and tends to be positively correlated with the default rate and the latter phenomenon is typically referred to as PD-LGD correlation (here PD refers to probability of default, which is often used synonymously with default rate). There is a large literature on modelling stochastic LGD and PD-LGD correlation, but there is a dearth of literature on using importance sampling to estimate large deviation probabilities in those models. Numerical evidence indicates that the proposed algorithms are extremely effective at reducing the computational burden associated with obtaining accurate estimates of large deviation probabilities across a wide variety of PD-LGD correlation models that have been proposed in the literature.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference17 articles.

1. Mathematical Statistics: Basic Ideas and Selected Topics;Bickel,2001

2. Efficient estimation of large portfolio loss probabilities in t-copula models;Chan;European Journal of Operational Research,2010

3. The sample size required in importance sampling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3