Redundant Configuration Method of MEMS Sensors for Bottom Hole Assembly Attitude Measurement

Author:

Zheng Yu1ORCID,Wang Lu1ORCID,Zhang Fan1,Yang Zulei1,Hu Yuanbiao1ORCID

Affiliation:

1. Faculty of Engineering Technology, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

Micro-electro-mechanical systems inertial measurement units (MEMS-IMUs) are increasingly being employed for measuring the attitude of bottom hole assemblies (BHAs). However, the reliability and measurement precision of a single MEMS-IMU may not meet drilling’s stringent needs. Redundant MEMS-IMU systems can effectively enhance the reliability and precision. This paper proposes a redundant configuration method for MEMS sensors tailored to BHA attitude measurement. Firstly, based on reliability theory and a cost-benefit analysis, considering factors such as cost, size, and reliability, the optimal number of sensors in the redundant system was determined to be six. Considering the structural characteristics of the BHA, a hollow hexagonal prism-shaped redundant configuration scheme was proposed, ensuring the circulation of drilling fluid within the drill pipe. Next, by employing Kalman filtering to integrate the output data from the six sensors, a virtual IMU (VIMU) was formed. Finally, experimental verification was carried out. The results confirmed that, after redundancy implementation, the velocity random walk of the accelerometer decreased by an average of 58% compared to a single MEMS-IMU, and bias instability was reduced by an average of 54%. The angular random walk of the gyroscope decreased by an average of 58%, and bias instability was reduced by an average of 37%. This research provides a theoretical foundation for enhancing the precision and reliability of BHA attitude measurements.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3