Effects of Dynamic IMU-to-Segment Misalignment Error on 3-DOF Knee Angle Estimation in Walking and Running

Author:

Jiang ChaoORCID,Yang Yan,Mao Huayun,Yang Dewei,Wang Wei

Abstract

The inertial measurement unit (IMU)-to-segment (I2S) alignment is an important part of IMU-based joint angle estimation, and the accurate estimation of the three degree of freedom (3-DOF) knee angle can provide practical support for the evaluation of motions. In this paper, we introduce a dynamic weight particle swarm optimization (DPSO) algorithm with crossover factor based on the joint constraint to obtain the dynamic alignment vectors of I2S, and use them to perform the quaternion-based 3-DOF knee angle estimation algorithm. The optimization algorithm and the joint angle estimation algorithm were evaluated by comparing with the optical motion capture system. The range of 3-DOF knee angle root mean square errors (RMSEs) is 1.6°–5.9° during different motions. Furthermore, we also set up experiments of human walking (3 km/h), jogging (6 km/h) and ordinary running (9 km/h) to investigate the effects of dynamic I2S misalignment errors on 3-DOF knee angle estimation during different motions by artificially adding errors to I2S alignment parameters. The results showed differences in the effects of I2S misalignment errors on the estimation of knee abduction, internal rotation and flexion, which indicate the differences in knee joint kinematics among different motions. The IMU to thigh misalignment error has the greatest effect on the estimation of knee internal rotation. The effect of IMU to thigh misalignment error on the estimation of knee abduction angle becomes smaller and then larger during the two processes of switching from walking to jogging and then speeding up to ordinary running. The effect of IMU to shank misalignment error on the estimation of knee flexion angle is numerically the largest, while the standard deviation (SD) is the smallest. This study can provide support for future research on the accuracy of 3-DOF knee angle estimation during different motions.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3