Abstract
The inertial measurement unit (IMU)-to-segment (I2S) alignment is an important part of IMU-based joint angle estimation, and the accurate estimation of the three degree of freedom (3-DOF) knee angle can provide practical support for the evaluation of motions. In this paper, we introduce a dynamic weight particle swarm optimization (DPSO) algorithm with crossover factor based on the joint constraint to obtain the dynamic alignment vectors of I2S, and use them to perform the quaternion-based 3-DOF knee angle estimation algorithm. The optimization algorithm and the joint angle estimation algorithm were evaluated by comparing with the optical motion capture system. The range of 3-DOF knee angle root mean square errors (RMSEs) is 1.6°–5.9° during different motions. Furthermore, we also set up experiments of human walking (3 km/h), jogging (6 km/h) and ordinary running (9 km/h) to investigate the effects of dynamic I2S misalignment errors on 3-DOF knee angle estimation during different motions by artificially adding errors to I2S alignment parameters. The results showed differences in the effects of I2S misalignment errors on the estimation of knee abduction, internal rotation and flexion, which indicate the differences in knee joint kinematics among different motions. The IMU to thigh misalignment error has the greatest effect on the estimation of knee internal rotation. The effect of IMU to thigh misalignment error on the estimation of knee abduction angle becomes smaller and then larger during the two processes of switching from walking to jogging and then speeding up to ordinary running. The effect of IMU to shank misalignment error on the estimation of knee flexion angle is numerically the largest, while the standard deviation (SD) is the smallest. This study can provide support for future research on the accuracy of 3-DOF knee angle estimation during different motions.
Funder
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献