Sensor Location Matters When Estimating Player Workload for Baseball Pitching

Author:

Agresta Cristine,Freehill Michael T.,Zendler Jessica,Giblin Georgia,Cain StephenORCID

Abstract

Estimating external workload in baseball pitchers is important for training and rehabilitation. Since current methods of estimating workload through pitch counts and rest days have only been marginally successful, clubs are looking for more sophisticated methods to quantify the mechanical loads experienced by pitchers. Among these are the use of wearable systems. While wearables offer a promising solution, there remains a lack of standards or guidelines for how best to employ these devices. As a result, sensor location and workload calculation methods vary from system to system. This can influence workload estimates and blur their interpretation and utility when making decisions about training or returning to sport. The primary purpose of this study was to determine the extent to which sensor location influences workload estimate. A secondary purpose was to compare estimates using different workload calculations. Acceleration data from three sensor locations—trunk, throwing upper arm, and throwing forearm—were collected from ten collegiate pitchers as they threw a series of pitches during a single bullpen session. The effect of sensor location and pitch type was assessed in relation to four different workload estimates. Sensor location significantly influenced workload estimates. Workload estimates calculated from the forearm sensor were significantly different across pitch types. Whole-body workload measured from a trunk-mounted sensor may not adequately reflect the mechanical loads experienced at throwing arm segments. A sensor on the forearm was the most sensitive to differences in workloads across pitch types, regardless of the calculation method.

Funder

the University of Michigan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3