A Reference Architecture for Cloud–Edge Meta-Operating Systems Enabling Cross-Domain, Data-Intensive, ML-Assisted Applications: Architectural Overview and Key Concepts

Author:

Trakadas PanagiotisORCID,Masip-Bruin XaviORCID,Facca Federico M.,Spantideas Sotirios T.,Giannopoulos Anastasios E.,Kapsalis Nikolaos C.,Martins Rui,Bosani Enrica,Ramon Joan,Prats Raül González,Ntroulias George,Lyridis Dimitrios V.ORCID

Abstract

Future data-intensive intelligent applications are required to traverse across the cloud-to-edge-to-IoT continuum, where cloud and edge resources elegantly coordinate, alongside sensor networks and data. However, current technical solutions can only partially handle the data outburst associated with the IoT proliferation experienced in recent years, mainly due to their hierarchical architectures. In this context, this paper presents a reference architecture of a meta-operating system (RAMOS), targeted to enable a dynamic, distributed and trusted continuum which will be capable of facilitating the next-generation smart applications at the edge. RAMOS is domain-agnostic, capable of supporting heterogeneous devices in various network environments. Furthermore, the proposed architecture possesses the ability to place the data at the origin in a secure and trusted manner. Based on a layered structure, the building blocks of RAMOS are thoroughly described, and the interconnection and coordination between them is fully presented. Furthermore, illustration of how the proposed reference architecture and its characteristics could fit in potential key industrial and societal applications, which in the future will require more power at the edge, is provided in five practical scenarios, focusing on the distributed intelligence and privacy preservation principles promoted by RAMOS, as well as the concept of environmental footprint minimization. Finally, the business potential of an open edge ecosystem and the societal impacts of climate net neutrality are also illustrated.

Funder

Spanish Ministry of Science, Innovation and Universities and FEDER

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3