Coagulation and Flocculation Optimization Process Applied to the Sidestream of an Urban Wastewater Treatment Plant

Author:

Barros Arturo,Vecino XanelORCID,Reig MònicaORCID,Cortina José LuisORCID

Abstract

Ammonium (NH4+) recirculation from the streams generated in the dehydration stage of the sludge generated in the anaerobic digestion of urban wastewater treatment plants (WWTPs), known as centrate or sidestream, produces a reduction in the efficiency of WWTPs. Given this scenario and the formulation that a WWTP should be considered a by-product generating facility (biofactory), solutions for ammonia/ammonium recovery are being promoted. These include a nitrogen source that reduces the need for ammonia production through the Haber–Bosch process. Therefore, the recovery of nutrients from urban cycles is a potential and promising line of research. In the case of nitrogen, this has been aimed at recovering NH4+ to produce high-quality fertilizers through membrane or ion exchange processes. However, these techniques usually require a pretreatment, which could include an ultrafiltration stage, to eliminate suspended solids and organic matter. In this case, the coagulation/flocculation (C/F) process is an economical alternative for this purpose. In this work, the sidestream from Vilanova i la Geltrú WWTP (Barcelona, Spain) was characterized to optimize a C/F process before being treated by other processes for ammonium recovery. The optimization was performed considering a bibliographic and experimental analysis of several operating parameters: coagulant and flocculant agents, mixing velocity, and operation time, among others. Then, the removal efficiency of control parameters such as turbidity, chemical oxygen demand (COD), and total suspended solids (TSS) was calculated. This optimization resulted in the use of 25 mg/L of ferric chloride (FeCl3) combined with 25 mg/L of a flocculant composed of silicon (SiO2 3%), aluminum (Al2SO4 64.5%), and iron salts (Fe2O3 32.5%), into a 1 min rapid mixing process at 200 rpm and a slow mixing for 30 min at 30 rpm, followed by a final 30 min settling process. The numerical and statistical results of the process optimization reached 91.5%, 59.1%, and 95.2% removal efficiency for turbidity, COD, and TSS, respectively. These efficiencies theoretically support the enhanced coagulation/flocculation process as a pretreatment for a higher NH4+ recovery rate, achieving 570.6 mgNH4+/L, and a reduction in the dimensioning or substitution of other membrane processes process due to its high TSS removal value.

Funder

Spanish Ministry of Science and Innovation

Catalan Government

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference38 articles.

1. Metcalf, L., Eddy, H.P., Abu-Orf, M., Bowden, G., Burton, F.L., Pfrang, W., Stensel, H.D., Tchobanoglous, G., Tsuchihashi, R., and Aecom (2014). Wastewater Engineering Treatment and Resource Recovery, McGraw-Hiil Education. [5th ed.].

2. Nitrogen and Phosphorus-Rich Sidestreams: Managing the Nutrient Merry-Go-Round;Phillips;Proc. Water Environ. Fed.,2006

3. Nutrient-energy-water recovery from synthetic sidestream centrate using a microbial electrolysis cell—Forward osmosis hybrid system;Zou;J. Clean. Prod.,2017

4. Investigation of bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR) to decrease the generation of excess sludge;Kim;Water Res.,2012

5. Mass fluxes of nitrogen and phosphorus through water reclamation facilities: Case study of biological nutrient removal, aerobic sludge digestion, and sidestream recycle;Kassouf;Water Environ. Res.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3