Speech Enhancement by Multiple Propagation through the Same Neural Network

Author:

Grzywalski TomaszORCID,Drgas SzymonORCID

Abstract

Monaural speech enhancement aims to remove background noise from an audio recording containing speech in order to improve its clarity and intelligibility. Currently, the most successful solutions for speech enhancement use deep neural networks. In a typical setting, such neural networks process the noisy input signal once and produces a single enhanced signal. However, it was recently shown that a U-Net-based network can be trained in such a way that allows it to process the same input signal multiple times in order to enhance the speech even further. Unfortunately, this was tested only for two-iteration enhancement. In the current research, we extend previous efforts and demonstrate how the multi-forward-pass speech enhancement can be successfully applied to other architectures, namely the ResBLSTM and Transformer-Net. Moreover, we test the three architectures with up to five iterations, thus identifying the method’s limit in terms of performance gain. In our experiments, we used the audio samples from the WSJ0, Noisex-92, and DCASE datasets and measured speech enhancement quality using SI-SDR, STOI, and PESQ. The results show that performing speech enhancement up to five times still brings improvements to speech intelligibility, but the gain becomes smaller with each iteration. Nevertheless, performing five iterations instead of two gives additional a 0.6 dB SI-SDR and four-percentage-point STOI gain. However, these increments are not equal between different architectures, and the U-Net and Transformer-Net benefit more from multi-forward pass compared to ResBLSTM.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3