High-Density 3D Printable Chipless RFID Tag with Structure of Passive Slot Rings

Author:

Ma Zhonghua,Jiang YanfengORCID

Abstract

A three-dimensional (3D) printable chipless radio frequency identification (RFID) tag, with high density and sensitivity, is proposed and fulfilled on insulator substrates. By printing a rectangular slot ring and designing specific geometry on the substrate, the printed structure shows high sensitivity in a resonant manner, with the benefits of high density and low cost. Considering the multiple rectangular rings with different sizes in a concentric distribution, a bit coding sequence can be observed in frequency spectra because of the corresponding different resonant frequencies aroused by the printed slots. In this way, the 3D printable chipless RFID tag can be fulfilled by adopting the structure of the rectangular slot ring on the insulated substrates. The main characteristics of the designed rectangular slot rings are verified on both flexible and solid substrates. A 12-bit chipless tag based on the slot ring structures is designed and implemented. The simulation and experiment results show good agreement on its characteristics. The frequency response reveals the fact that the 2th, 3th and 4th harmonic do not exist, which is a unique merit for improving the encoding capacity and the sensitivity of the corresponding reader. The electric field direction of the electromagnetic wave of the reader excitation tag is demonstrated to be wide, up to 90° on the tag horizontal plane, 30° on the vertical direction.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3