Development and Characterization of Nano-Ink from Silicon Carbide/Multi-Walled Carbon Nanotubes/Synthesized Silver Nanoparticles for Non-Enzymatic Paraoxon Residuals Detection

Author:

Chuasontia Itsarapong123,Sirisom Wichaya4,Nakpathomkun Natthapon13,Toommee Surachet5,Pechyen Chiravoot34,Tangnorawich Benchamaporn13,Parcharoen Yardnapar36

Affiliation:

1. Department of Physics, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand

2. Faculty of Learning Science and Education, Thammasat University, Bangkok 12120, Thailand

3. Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand

4. Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand

5. Industrial Arts Program, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand

6. Chulabhorn International College of Medicine, Thammasat University, Bangkok 12120, Thailand

Abstract

The ongoing advancement in the synthesis of new nanomaterials has accelerated the rapid development of non-enzymatic pesticide sensors based on electrochemical platforms. This study aims to develop and characterize Nano-ink for applying organophosphorus pesticides using paraoxon residue detection. Multi-walled carbon nanotubes, silicon carbide, and silver nanoparticles were used to create Nano-ink using a green synthesis process in 1:1:0, 1:1:0.5, and 1:1:1 ratios, respectively. These composites were combined with chitosan of varying molecular weights, which served as a stabilizing glue to keep the Nano-ink employed in a functioning electrode stable. By using X-ray powder diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and a field emission scanning electron microscope, researchers were able to examine the crystallinity, element composition, and surface morphology of Nano-ink. The performance of the proposed imprinted working electrode Nano-ink was investigated using cyclic voltammetry and differential pulse voltammetry techniques. The Cyclic voltammogram of Ag NPs/chitosan (medium, 50 mg) illustrated high current responses and favorable conditions of the Nano-ink modified electrode. Under the optimized conditions, the reduction currents of paraoxon using the DPV techniques demonstrated a linear reaction ranging between 0.001 and 1.0 µg/mL (R2 = 0.9959) with a limit of detection of 0.0038 µg/mL and a limit of quantitation of 0.011 µg/mL. It was concluded that the fabricated Nano-ink showed good electrochemical activity for non-enzymatic paraoxon sensing.

Funder

Thailand Science Research and Innovation Fundamental Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3