Combined Temperature Compensation Method for Closed-Loop Microelectromechanical System Capacitive Accelerometer

Author:

Liu Guowen12,Liu Yu2,Li Zhaohan2,Ma Zhikang2,Ma Xiao2,Wang Xuefeng2,Zheng Xudong1ORCID,Jin Zhonghe1

Affiliation:

1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China

2. Beijing Institute of Aerospace Control Device, Beijing 100854, China

Abstract

This article describes a closed-loop detection MEMS accelerometer for acceleration measurement. This paper analyzes the working principle of MEMS accelerometers in detail and explains the relationship between the accelerometer zero bias, scale factor and voltage reference. Therefore, a combined compensation method is designed via reference voltage source compensation and terminal temperature compensation of the accelerometer, which comprehensively improves the performance over a wide temperature range of the accelerometer. The experiment results show that the initial range is reduced from 3679 ppm to 221 ppm with reference voltage source compensation, zero-bias stability of the accelerometer over temperature is increased by 14.3% on average and the scale factor stability over temperature is increased by 88.2% on average. After combined compensation, one accelerometer zero-bias stability over temperature was reduced to 40 μg and the scale factor stability over temperature was reduced to 16 ppm, the average value of the zero-bias stability over temperature was reduced from 1764 μg to 36 μg, the average value of the scale factor stability over temperature was reduced from 2270 ppm to 25 ppm, the average stability of the zero bias was increased by 97.96% and the average stability of the scale factor was increased by 98.90%.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Basic Public Welfare Research Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3