Influence of Mn2+ and Eu3+ Concentration on Photoluminescence and Thermal Stability Properties in Eu3+-Activated ZnMoO4 Red Phosphor Materials

Author:

Chen Fan1,Akram Muhammad Nadeem1ORCID,Chen Xuyuan1ORCID

Affiliation:

1. Department of Microsystems, Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Vestfold, University of South-Eastern Norway, 3184 Borre, Norway

Abstract

The integration of trivalent europium ion (Eu3+)-doped zinc molybdate (ZnMoO4) as red phosphors in next-generation solid-state lighting (SSL) is impeded by their extended electron lifetime and suboptimal thermal stability. To overcome these limitations, we propose a co-doping approach by incorporating Mn2+ and Eu3+ in ZnMoO4, aiming to improve thermal reversibility and reduce the lifetime of electron transitions. A series of Eu3+-doped ZnMoO4 and Mn2+/Eu3+-co-doped ZnMoO4 phosphor materials were synthesized via the conventional sol–gel method, and their photoluminescence properties were compared under high-temperature conditions. Experimental results indicate that the introduction of Mn2+ into Eu3+-doped ZnMoO4 leads to a decrease in quantum efficiency and electron lifetime, primarily attributed to defects within the crystal lattice and energy transfer from Eu3+ to Mn2+, resulting in enhanced non-radiative transitions. However, the addition of a small quantity of Mn2+ remarkably improves the thermal stability and reversibility of the phosphors. Consequently, this co-doping strategy presents a promising avenue for expanding the application possibilities of phosphor materials, particularly for high-power SSL applications subjected to elevated temperatures. Hence, Eu3+-only doped samples are well-suited for lighting applications due to their high IQE and excellent thermal stability. Conversely, Eu3+/Mn2+-co-doped samples show promise in applications that require a shorter electron lifetime and good reversibility.

Funder

Research Council of Norway

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3