Adsorption of Preformed Microgel–Enzyme Complexes as a Novel Strategy toward Engineering Microgel-Based Enzymatic Biosensors

Author:

Sigolaeva Larisa V.1ORCID,Shalybkova Anna A.1,Sharifullin Timur Z.1ORCID,Pergushov Dmitry V.1ORCID

Affiliation:

1. Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia

Abstract

A novel approach to surface modification, which consists of the adsorption of microgel–enzyme complexes preformed in solution, is highlighted. Accordingly, the microgel–enzyme complexes were formed due to the electrostatic interaction of the oppositely charged interacting components, that is, a cationic poly(N-isopropylacrylamide)-based microgel and glucose oxidase taken as a model enzyme. The spontaneous adsorption of the prepared microgel–enzyme complexes, examined by means of quartz crystal microbalance with dissipation monitoring and atomic force microscopy, was observed, resulting in the formation of well-adhered microgel–enzyme coatings. Further, the preformed microgel–enzyme complexes were adsorbed onto the modified graphite-based screen-printed electrodes, and their enzymatic responses were determined by means of amperometry, demonstrating a remarkable analytical performance toward the quantification of β-D-glucose in terms of high sensitivity (0.0162 A × M−1 × cm−2), a low limit of detection (1 μM), and an expanded linear range (1–2000 μM). The fabricated microgel–enzyme biosensor constructs were found to be very stable against manifold-repeated measurements. Finally, the pH- or salt-induced release of glucose oxidase from the adsorbed preformed microgel–enzyme complexes was demonstrated. The findings obtained for the microgel–enzyme coatings prepared via adsorption of the preformed microgel–enzyme complexes were compared to those found for the microgel–enzyme coatings fabricated via a previously exploited two-stage sequential adsorption, which includes the adsorption of the microgel first, followed by the electrostatic binding of glucose oxidase by the adsorbed microgel.

Funder

Russian Science Foundation

M.V. Lomonosov Moscow State University Program of Development

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3