A Novel Silicon Forward-Biased PIN Mach–Zehnder Modulator with Two Operating States

Author:

Yu Hang12ORCID,Tu Donghe12ORCID,Huang Xingrui12ORCID,Yin Yuxiang12ORCID,Yu Zhiguo1,Guan Huan1,Jiang Lei1,Li Zhiyong1

Affiliation:

1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China

Abstract

In this paper, we demonstrate a silicon forward-biased positive intrinsic negative (PIN) Mach–Zehnder modulator (MZM), which has two operating states of high efficiency and high speed. The two operating states are switched by changing the position where the electric signal is loaded. The modulator incorporates a PIN phase shifter integrated with the passive resistance and capacitance (RC) equalizer (PIN-RC), which expands the electro-optic (E-O) bandwidth by equalizing it with modulation efficiency. The fabricated modulator exhibits a low insertion loss of 1.29 dB in two operating states and a compact design with a phase shifter length of 500 μm. The modulation efficiencies are 0.0088 V·cm and 1.43 V·cm, and the corresponding 3 dB E-O bandwidths are 200 MHz and 7 GHz, respectively. The high-speed modulation performance of the modulator is confirmed by non-return-to-zero (NRZ) modulation with a data rate of 15 Gbps without any pre-emphasis or post-processing. The presented modulator shows functional flexibility, low insertion loss, and a compact footprint, and it can be suitable for applications like optical switch arrays and analog signal processing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3