On the Relationship between Low Latitude Scintillation Onset and Sunset Terminator over Africa

Author:

Mersha Mogese Wassaie,Lewi Elias,Jakowski NorbertORCID,Wilken Volker,Berdermann Jens,Kriegel Martin

Abstract

The solar terminator is a moving boundary between day-side and night-side regions on the Earth, which is a substantial source of perturbations in the ionosphere. In the vicinity of the solar terminator, essential parameters like S4 index measurements are widely analyzed in order to monitor and predict perturbations in the ionosphere. The utilization of the scintillation index S4 is a well-accepted approach to describe the amplitude/intensity fluctuation of a received signal, predominantly caused by small-scale irregularities of the ionospheric plasma. We report on the longitudinal daily and seasonal occurrence of GNSS signal scintillations, using the data derived from the GNSS stations in Bahir Dar, Ethiopia, Lomé, Togo and Dakar, Senegal. The observed seasonal climatology of GNSS signal scintillations in equatorial Africa is adequately explained by the alignment of the solar terminator and local geomagnetic declination line. It should be pointed out that the strongest scintillations are most frequently observed during the time when the solar terminator is best aligned with the geomagnetic declination line. At all three stations, the comparison of computational and observational results indicated that the scintillation activity culminated around equinoxes in the years 2014, 2015 and 2016. Comparatively, the western equatorial Africa sector has the most intense, longest-lasting, and highest scintillation occurrence rate in equinoctial seasons in all three years. For the first time, we show that the seasonal variation of the scintillation peaks changes systematically from west to east at equatorial GNSS stations over Africa. A detailed analysis of the solar day–night terminator azimuth at ionospheric heights including the time equation shows that the scintillation intensity has a maximum if the azimuth of the terminator coincides with the declination line of the geomagnetic field. Due to the remarkable change of the declination by about 10° at the considered GNSS stations, the distance between scintillation peaks increases by 46 days when moving westward from the Bahir Dar to the Dakar GNSS station. The observations agree quite well with the computational results, thus confirming Tsunoda’s theory.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3