Author:
Zheng Wei,Lu Xia,Li Yu,Li Shan,Zhang Yuanzhi
Abstract
The stomata of Suaeda salsa are closed and the photosynthetic efficiency is decreased under conditions of water–salt imbalance, with the change to photosynthesis closely related to the chlorophyll fluorescence parameters of the photosystem PSII. Accordingly, chlorophyll fluorescence parameters were selected to monitor the growth status of Suaeda salsa in coastal wetlands under conditions of water and salt. Taking Suaeda salsa in coastal wetlands as the research object, we set up five groundwater levels (0 cm, –5 cm, –10 cm, –20 cm, and –30 cm) and six NaCl salt concentrations (0%, 0.5%, 1 %, 1.5%, 2%, and 2.5%) to carry out independent tests of Suaeda salsa potted plants and measured the canopy reflectance spectrum and chlorophyll fluorescence parameters of Suaeda salsa. A polynomial regression method was used to carry out hyperspectral identification of Suaeda salsa chlorophyll fluorescence parameters under water and salt stress. The results indicated that the chlorophyll fluorescence parameters Fv/Fm, Fm', and ΦPSII of Suaeda salsa showed significant relationships with vegetation index under water and salt conditions. The sensitive canopy band ranges of Suaeda salsa under water and salt conditions were 680–750 nm, 480–560 nm, 950–1000 nm, 1800–1850 nm, and 1890–1910 nm. Based on the spectrum and the first-order differential spectrum, the spectral ratio of A/B was constructed to analyze the correlation between it and the chlorophyll fluorescence parameters of Suaeda salsa. We constructed thirteen new vegetation indices. In addition, we discovered that the hyperspectral vegetation index D690/D1320 retrieved Suaeda chlorophyll fluorescence parameter Fv/Fm with the highest accuracy, with a multiple determination coefficient R2 of 0.813 and an RMSE of 0.042, and that D725/D1284 retrieved Suaeda chlorophyll fluorescence parameter ΦPSII model with the highest accuracy, with a multiple determination coefficient R2 of 0.848 and an RMSE of 0.096. The hyperspectral vegetation index can be used to retrieve the chlorophyll fluorescence parameters of Suaeda salsa in coastal wetlands under water and salt conditions, providing theoretical and technical support for future large-scale remote sensing inversion of chlorophyll fluorescence parameters.
Subject
General Earth and Planetary Sciences