Abstract
Using high-resolution remote sensing data to identify infected trees is an important method for controlling pine wilt disease (PWD). Currently, single-date image classification methods are widely used for PWD detection in pure stands of pine. However, they often yield false detections caused by deciduous trees, brown herbaceous, and sparsely vegetated regions in complex landscapes, resulting in low user accuracies. Due to the limitations on the bands of the high-resolution imagery, it is difficult to distinguish wilted pine trees from such easily confused objects when only using the optical spectral characteristics. This paper proposes a spatiotemporal change detection method to reduce false detections in tree-scale PWD monitoring under a complex landscape. The framework consisted of three parts, which represent the capture of spectral, temporal, and spatial features: (1) the Normalized Green–Red Difference Index (NGRDI) was calculated as a descriptor of canopy greenness; (2) two NGRDI images with similar dates in adjacent years were contrasted to obtain a bitemporal change index that represents the temporal behaviors of typical cover types; and (3) a spatial enhancement was performed on the change index using a convolution kernel matching the spatial patterns of PWD. Finally, a set of criteria based on the above features were established to extract the wilted pine trees. The results showed that the proposed method effectively distinguishes wilted pine trees from other easily confused objects. Compared with single-date image classification, the proposed method significantly improved user’s accuracy (81.2% vs. 67.7%) while maintaining the same level of producer’s accuracy (84.7% vs. 82.6%).
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献