A New Methodology-Based Sensorial System with Which to Determine the Volume of Liquid Contained in a Cylindrical Tank Subjected to Full Variations in Its Orientation

Author:

del Horno Leticia1ORCID,Segura Eva2ORCID,Somolinos José A.1ORCID,Morales Rafael2ORCID

Affiliation:

1. Grupo de Investigación Tecnológico en Energías Renovables Marinas (GIT-ERM), Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid, Avda. Memoria 4, 28040 Madrid, Spain

2. Escuela Técnica Superior de Ingeniería Industrial de Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain

Abstract

It is necessary to determine the volume of water contained in a tank for a wide range of applications, such as the automation and monitoring of industrial operations. In the context of the marine industry, the aforementioned information plays a vital role in the effective management of submerged devices, specifically in relation to their depths and/or inclinations. In these cases, it is not feasible to quantify the volume of liquid in a tank by means of direct measurements, owing to the fact that devices can be subjected to changes in their orientation. This variation in inclination could have a variety of causes, such as the implementation of automated emersion–immersion maneuvers in a TEC or variations in depth in an AUV. Nevertheless, it can be deduced by considering the level of the tank and its geometric properties. This paper presents a new methodology-based sensorial system (composed of three capacitive sensors and an inclinometer) for accurate determination of the volume of a liquid contained within a cylindrical tank subjected to full variations in its orientation. The effectiveness of the proposed methodology-based sensorial system has been verified by the results obtained from experiments conducted on a laboratory platform, thus demonstrating the high reliability of the model experiment and the relative errors study carried out.

Funder

Universidad de Castilla-La Mancha

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3