Induction of Reproductive Sterility in Coho Salmon (Oncorhynchus kisutch) by an Immersion-Based Gene Silencing Technology

Author:

Xu Lan12ORCID,Zhao Mingli34ORCID,Zohar Yonathan1,Wong Ten-Tsao1ORCID

Affiliation:

1. Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA

2. School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK

3. Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA

4. Department of Pathobiology and Population Sciences, Royal Veterinary College, London AL9 7TA, UK

Abstract

Undesired maturation and reproduction are major challenges in fish aquaculture regarding genetic introgression, precocious maturation, and reproduction-related mortality, which can have profound ecological or economic impacts. Farming reproductively sterile fish can effectively mitigate these challenges. In this paper, we transferred and applied a novel immersion-based, non-transgenic gene silencing technology to sterilize coho salmon for the first time. Unfertilized eggs were bath immersion-treated with csdnd-MO-Vivo in different immersion media. Eyed rates of treated groups ranged from 0.9 to 63.5%. Sterile fish lacking germ cells, and those with arrested germ cells/atretic oocytes, were obtained at 14 and 20 months of age, albeit at a low percentage (2.3 to 10.0% based on females). Gonadal histology and vasa/nanos3 gene expression profile were provided for comparing fertile and sterile gonads, as well as retarded ovaries. Future directions and strategies for optimizing the technology and improving sterility induction were also proposed. The successful production of sterile coho salmon achieved in this study demonstrates the proof of principle for this new sterilization technology. As we continue to expand upon these findings and refine the technology, achieving coho salmon sterile population farming would facilitate the future transfer and application to other commercially important aquaculture fish.

Funder

University of Maryland Baltimore County

China Scholarship Council

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3