Daily-Scale Prediction of Arctic Sea Ice Concentration Based on Recurrent Neural Network Models

Author:

Feng Juanjuan123,Li Jia123,Zhong Wenjie123,Wu Junhui123,Li Zhiqiang123,Kong Lingshuai123,Guo Lei12

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China

3. Laboratory of Geohazards Perception, Cognition and Prediction, Central South University, Changsha 410083, China

Abstract

Arctic sea ice prediction is of great practical significance in facilitating Arctic route planning, optimizing fisheries management, and advancing the field of sea ice dynamics research. While various deep learning models have been developed for sea ice prediction, they predominantly operate at the seasonal or sub-seasonal scale, often focusing on localized areas, and few cater to full-region daily-scale prediction. This study introduces the use of spatiotemporal sequence data prediction models, namely, the convolutional LSTM (ConvLSTM) and predictive recurrent neural network (PredRNN), for the prediction of sea ice concentration (SIC). Our analysis reveals that, when solely utilizing SIC historical data as the input, the ConvLSTM model outperforms the PredRNN model in SIC prediction. To enhance the models’ capacity to capture spatiotemporal relationships between multiple variables, we expanded the range of input data types to form the ConvLSTM-multi and PredRNN-multi models. Experimental findings demonstrate that the prediction accuracy of the four models significantly surpasses the CMIP6 model in three prospective climate scenarios (SSP126, SSP245, and SSP585). Of the four models, the ConvLSTM-multi model excels in assimilating the influence of reanalysis data on sea ice within the sea ice edge region, thus exhibiting superior performance than the PredRNN-multi model in predicting daily Arctic SIC over the subsequent 10 days. Furthermore, sensitivity tests on various model parameters highlight the substantial impact of sea surface temperature and prediction date on the accuracy of daily sea ice prediction, and meteorological and oceanographic parameters primarily affect the prediction accuracy of the thin-ice region at the edge of the sea ice.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3