Evaluating the Detection of Oceanic Mesoscale Eddies in an Operational Eddy-Resolving Global Forecasting System

Author:

Mo Huier12,Qin Yinghao12,Wan Liying12,Zhang Yu12,Huang Xing3,Wang Yi12,Xing Jianyong4ORCID,Yu Qinglong12,Wu Xiangyu12

Affiliation:

1. National Marine Environmental Forecasting Center (NMEFC), Beijing 100081, China

2. Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center (NMEFC), Beijing 100081, China

3. Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing 100084, China

4. Ministry of Natural Resources, Beijing 100812, China

Abstract

In this study, a global analysis and forecasting system at 1/12° is built for operational oceanography at the National Marine Environmental Forecasting Center (NMEFC) by using the NEMO ocean model (NMEFC-NEMO). First, statistical analysis methods are designed to evaluate the performance of sea level anomaly (SLA) forecasting. The results indicate that the NMEFC-NEMO performs well in SLA forecasting when compared with the Mercator-PSY4, Mercator-PSY3, UK-FOAM, CONCEPTS-GIOPS and Bluelink-OceanMAPS forecasting systems. The respective root-mean-squared errors (RMSEs) of NMEFC-NEMO (Mercator PSY4) are 0.0654 m (0.0663 m) and 0.0797 m (0.0767 m) for the lead times of 1 and 7 days. The anomaly correlation coefficients between forecasting and observations exceed 0.8 for the NMEFC-NEMO and Mercator-PSY4 systems, suggesting that the accuracy of SLA predicted using NMEFC-NEMO is comparable to Mercator PSY4 and superior to other forecasting systems. Moreover, the global spatial distribution of oceanic eddies are effectively represented in NMEFC-NEMO when compared to that in the HYCOM reanalysis, and the detection rate reaches more than 90% relative to HYCOM reanalysis. Regarding the strong eddies in the Kuroshio region, the NMEFC-NEMO reproduces the characteristic for anticyclonic and cyclonic eddies merging and splitting alternatively. As for the detective eddies in the Gulf Stream, NMEFC-NEMO effectively represents the spatial distribution of mesoscale eddies from different seasons. The amplitude of oceanic eddies, including both cyclones and anticyclones, were much stronger on 1 July 2019 than 1 January 2019. Overall, NMEFC-NEMO has a superior performance in SLA forecasting and effectively represents the oceanic mesoscale eddies for operational oceanography.

Funder

the National Basic Research Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3