A Novel Method for Fatigue Damage Assessment in Bimodal Processes Considering High- and Low-Frequency Reduction Effects

Author:

Guo Yuanzhi1,Wang Shuqing1,Guo Haiyan1,Song Xiancang12

Affiliation:

1. College of Engineering, Ocean University of China, Qingdao 266100, China

2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Due to inherent nonlinearities within floating systems and the second-order wave forces affecting them, the dynamic responses of floating systems manifest as bimodal Gaussian processes. Consequently, the classical spectral fatigue assessment method grounded in the Rayleigh distribution cannot be applied. This paper introduces the double frequency coupled (DFC) method as a spectral fatigue assessment approach, providing an accurate estimation of fatigue damage originating from bimodal Gaussian processes. Within the DFC method, the bimodal Gaussian process is partitioned into two components: low-frequency (LF) and high-frequency (HF) processes. A Gaussian distribution is employed to describe the probability distribution function (PDF) of the amplitude reduction induced by the interaction between LF and HF processes. The PDF of small-cycle fatigue can be computed by convoluting the PDF of HF amplitudes and the reduction amplitude between LF and HF. Similarly, the PDF of large-cycle fatigue can be determined through convolution, which involves the PDF of LF amplitudes and small-cycle fatigue. The overall fatigue damage arising from the bimodal Gaussian process is obtained by directly summing the contributions of small-cycle and large-cycle fatigue. Numerical investigations of the DFC method’s effectiveness are presented through a series of parametric studies, demonstrating its robustness, efficiency, and accuracy within engineering expectations. Furthermore, the DFC method is found to be applicable to both single-slope and two-slope S-N curves.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Major Research Development Program of Shandong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3