Implementation of an Efficient Image Transmission Algorithm for Unmanned Surface Vehicles Based on Semantic Communication

Author:

Chen Yuanming1ORCID,Hong Xiaobin2,Cui Bin23,Peng Rongfa2

Affiliation:

1. School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510641, China

2. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China

3. Guangzhou Shipyard International Company Limited, Guangzhou 511462, China

Abstract

With the increasingly maturing technology of unmanned surface vehicles (USVs), their applications are becoming more and more widespread. In order to meet operational requirements in complex scenarios, the real-time interaction and linkage of a large amount of information is required between USVs, between USVs and mother ships, and between USVs and shore-based monitoring systems. Visual images are the main perceptual information gathered from USVs, and their efficient transmission and recognition directly affect the real-time performance of information exchange. However, poor maritime communication signals, strong channel interference, and low bandwidth pose great challenges to efficient image transmission. Traditional image transmission methods have difficulty meeting the real-time and image quality requirements of visual image transmissions from USVs. Therefore, this paper proposes an efficient method for visual image transmission from USVs based on semantic communication. A self-encoder network for semantic encoding which compresses the image into low-dimensional latent semantics through the encoding end, thereby preserving semantic information while greatly reducing the amount of data transmitted, is designed. On the other hand, a generative adversarial network is designed for semantic decoding. The decoding end decodes and reconstructs high-quality images from the semantic information transmitted through the channel, thereby improving the efficiency of image transmission. The experimental results show that the performance of the algorithm is significantly superior to traditional image transmission methods, achieving the best image quality while transmitting the minimum amount of data. Compared with the typical BPG algorithm, when the compression ratio of the proposed algorithm is 51.6% of that of the BPG algorithm, the PSNR and SSIM values are 7.6% and 5.7% higher than the BPG algorithm, respectively. And the average total time of the proposed algorithm is only 59.4% of that of the BPG algorithm.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3