Investigation of the Effect of Magnetic Water and Polyethylene Fiber Insertion in Concrete Mix

Author:

Alkhrissat Tariq1ORCID

Affiliation:

1. Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan

Abstract

The features of a concrete mix are determined by the hydration of cement, which is accomplished utilizing the water quality utilized in the mix. Numerous researchers have worked on integrating pozzolanic or nanoparticles to increase hydration processes and impart high strength to concrete. Magnetic-field-treated water (MFTW) has been used in a novel method to enhance the characteristics of concrete. Due to magnetization, water particles become charged, and the molecules inside the water cluster fall from 13 to 5 or 6, lowering the hardness of water and so boosting the strength of concrete when compared to the usage of regular water (NW). Magnetic water (MW) is used in advanced building methods and procedures to improve physicochemical qualities. This study focuses on analyzing water quality standards using physiochemical analysis, such as electrical conductivity (EC), pH, and total dissolved solids (TDS) using the MW at various magnetizations (0.9 Tesla (MW0.9), 0.6 Tesla (MW0.6), 0.3 Tesla (MW0.3). Tests were carried out to assess the fresh, hardened, and microstructural behavior of concrete created with magnetic water (MW) using techniques for microstructural characterization such as Fourier-transform infrared spectroscopy (FT-IR). According to the findings, the magnetic influence on water parameters improved significantly with increasing magnetic intensity. As compared to regular water concrete, the MW0.9 mix increased workability, compressive strength and splitting tensile strength by 9.2%, 32.9%, and 34.2%, respectively, compared to normal water concrete (NWC).

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3