Void Filling of Digital Elevation Models with a Terrain Texture Learning Model Based on Generative Adversarial Networks

Author:

Qiu ,Yue ,Liu

Abstract

Digital elevation models (DEMs) are an important information source for spatial modeling. However, data voids, which commonly exist in regions with rugged topography, result in incomplete DEM products, and thus significantly degrade DEM data quality. Interpolation methods are commonly used to fill voids of small sizes. For large-scale voids, multi-source fusion is an effective solution. Nevertheless, high-quality auxiliary source information is always difficult to retrieve in rugged mountainous areas. Thus, the void filling task is still a challenge. In this paper, we proposed a method based on a deep convolutional generative adversarial network (DCGAN) to address the problem of DEM void filling. A terrain texture generation model (TTGM) was constructed based on the DCGAN framework. Elevation, terrain slope, and relief degree composed the samples in the training set to better depict the terrain textural features of the DEM data. Moreover, the resize-convolution was utilized to replace the traditional deconvolution process to overcome the staircase in the generated data. The TTGM was trained on non-void SRTM (Shuttle Radar Topography Mission) 1-arc-second data patches in mountainous regions collected across the globe. Then, information neighboring the voids was involved in order to infer the latent encoding for the missing areas approximated to the distribution of training data. This was implemented with a loss function composed of pixel-wise, contextual, and perceptual constraints during the reconstruction process. The most appropriate fill surface generated by the TTGM was then employed to fill the voids, and Poisson blending was performed as a postprocessing step. Two models with different input sizes (64 × 64 and 128 × 128 pixels) were trained, so the proposed method can efficiently adapt to different sizes of voids. The experimental results indicate that the proposed method can obtain results with good visual perception and reconstruction accuracy, and is superior to classical interpolation methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3