Using Continuous Change Detection and Classification of Landsat Data to Investigate Long-Term Mangrove Dynamics in the Sundarbans Region

Author:

Awty-Carroll KatieORCID,Bunting PeteORCID,Hardy AndyORCID,Bell Gemma

Abstract

Mangrove forests play a global role in providing ecosystem goods and services in addition to acting as carbon sinks, and are particularly vulnerable to climate change effects such as rising sea levels and increased salinity. For this reason, accurate long-term monitoring of mangrove ecosystems is vital. However, these ecosystems are extremely dynamic and data frequency is often reduced by cloud cover. The Continuous Change Detection and Classification (CCDC) method has the potential to overcome this by utilising every available observation on a per-pixel basis to build stable season-trend models of the underlying phenology. These models can then be used for land cover classification and to determine greening and browning trends. To demonstrate the utility of this approach, CCDC was applied to a 30-year time series of Landsat data covering an area of mangrove forest known as the Sundarbans. Spanning the delta formed by the confluence of the Ganges, Brahmaputra and Meghna river systems, the Sundarbans is the largest contiguous mangrove forest in the world. CCDC achieved an overall classification accuracy of 94.5% with a 99% confidence of being between 94.2% and 94.8%. Results showed that while mangrove extent in the Sundarbans has remained stable, around 25% of the area experienced an overall negative trend, probably due to the effect of die-back on Heritiera fomes. In addition, dates and magnitudes of change derived from CCDC were used to investigate damage and recovery from a major cyclone; 11% of the Sundarbans was found to have been affected by Cyclone Sidr in 2007, 47.6% of which had not recovered by mid-2018. The results indicate that while the Sundarbans forest is resilient to cyclone events, the long-term degrading effects of climate change could reduce this resilience to critical levels. The proposed methodology, while computationally expensive, also offers means by which the full Landsat archive can be analyzed and interpreted and should be considered for global application to mangrove monitoring.

Funder

European Social Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3