Canopy Height Estimation from Single Multispectral 2D Airborne Imagery Using Texture Analysis and Machine Learning in Structurally Rich Temperate Forests

Author:

Boutsoukis Christos,Manakos IoannisORCID,Heurich Marco,Delopoulos AnastasiosORCID

Abstract

Canopy height is a fundamental biophysical and structural parameter, crucial for biodiversity monitoring, forest inventory and management, and a number of ecological and environmental studies and applications. It is a determinant for linking the classification of land cover to habitat categories towards building one-to-one relationships. Light detection and ranging (LiDAR) or 3D Stereoscopy are the commonly used and most accurate remote sensing approaches to measure canopy height. However, both require significant time and budget resources. This study proposes a cost-effective methodology for canopy height approximation using texture analysis on a single 2D image. An object-oriented approach is followed using land cover (LC) map as segmentation vector layer to delineate landscape objects. Global texture feature descriptors are calculated for each land cover object and used as variables in a number of classifiers, including single and ensemble trees, and support vector machines. The aim of the analysis is the discrimination among classes in a wide range of height values used for habitat mapping (from less than 5 cm to 40 m). For that task, different spatial resolutions are tested, representing a range from airborne to spaceborne quality ones, as well as their combinations, forming a multiresolution training set. Multiple dataset alternatives are formed based on the missing data handling, outlier removal, and data normalization techniques. The approach was applied using orthomosaics from DMC II airborne images, and evaluated against a reference LiDAR-derived canopy height model (CHM). Results reached overall object-based accuracies of 67% with the percentage of total area correctly classified exceeding 88%. Sentinel-2 simulation and multiresolution analysis (MRA) experiments achieved even higher accuracies of up to 85% and 91%, respectively, at reduced computational cost, showing potential in terms of transferability of the framework to large spatial scales.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3