Assessment of Post-Earthquake Damaged Building with Interferometric Real Aperture Radar

Author:

Gonzalez-Drigo Ramon,Cabrera Esteban,Luzi GuidoORCID,Pujades LuisORCID,Vargas-Alzate Yeudy,Avila-Haro Jorge

Abstract

In this study the main results of a detailed analysis of an actual building, which was severely damaged during the Mw 5.1, May 11th 2011, Lorca earthquake (Murcia, Spain) are presented. The dynamic behavior of the building was analyzed by means of empirical and numerical approaches. The displacement response of the building submitted to ambient noise was recorded by using a Real Aperture Radar (RAR). This approach provides a secure remote sensing procedure that does not require entering the building. Based on the blueprints and other available graphical information about the building, a numeric 3D model was also set up, allowing obtaining capacity spectra and fragility curves in the two main resistant directions of the building. The main purpose of this study was to check out the feasibility of the RAR-based method to detect the safety state of a damaged building after an earthquake, without the need of entering unsafe structures. A good consistency of the numerical and experimental approaches and the observed damage was obtained, showing that RAR interferometric-based tools may provide promising supplementary remote sensing methods to safely survey and report about the structural health and the operative conditions of buildings in post-earthquake scenarios.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Foreword special issue LORCA’s earthquake

2. Do Directionality Effects Influence Expected Damage? A Case Study of the 2017 Central Mexico Earthquake

3. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review;Doebling,1996

4. A Review of Structural Health Monitoring Literature: 1996–2001;Sohn,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3