Assessing the Feasibility of Using Sentinel-2 Imagery to Quantify the Impact of Heatwaves on Irrigated Vineyards

Author:

Cogato AlessiaORCID,Pagay VinayORCID,Marinello FrancescoORCID,Meggio FrancoORCID,Grace Peter,De Antoni Migliorati MassimilianoORCID

Abstract

Heatwaves are common in many viticultural regions of Australia. We evaluated the potential of satellite-based remote sensing to detect the effects of high temperatures on grapevines in a South Australian vineyard over the 2016–2017 and 2017–2018 seasons. The study involved: (i) comparing the normalized difference vegetation index (NDVI) from medium- and high-resolution satellite images; (ii) determining correlations between environmental conditions and vegetation indices (Vis); and (iii) identifying VIs that best indicate heatwave effects. Pearson’s correlation and Bland–Altman testing showed a significant agreement between the NDVI of high- and medium-resolution imagery (R = 0.74, estimated difference −0.093). The band and the VI most sensitive to changes in environmental conditions were 705 nm and enhanced vegetation index (EVI), both of which correlated with relative humidity (R = 0.65 and R = 0.62, respectively). Conversely, SWIR (short wave infrared, 1610 nm) exhibited a negative correlation with growing degree days (R = −0.64). The analysis of heat stress showed that green and red edge bands—the chlorophyll absorption ratio index (CARI) and transformed chlorophyll absorption ratio index (TCARI)—were negatively correlated with thermal environmental parameters such as air and soil temperature and growing degree days (GDDs). The red and red edge bands—the soil-adjusted vegetation index (SAVI) and CARI2—were correlated with relative humidity. To the best of our knowledge, this is the first study demonstrating the effectiveness of using medium-resolution imagery for the detection of heat stress on grapevines in irrigated vineyards.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3