A Composite Method for Predicting Local Accuracies in Remotely Sensed Land-Cover Change Using Largely Non-Collocated Sample Data

Author:

Mei Yingying,Zhang Jingxiong,Zhang Wangle,Liu Fengzhu

Abstract

As in conventional error matrix-based accuracy assessments, collocated reference sample data are often used for characterizing per-pixel (local) accuracies in land-cover change maps so that local accuracy predictions can be made using direct methods. In that way, correctness in “from-to” change categorization at sample pixels is assessed and modeled directly. To circumvent the issue of reference sample data being non-collocated, as is often the case for sample data collected independently for mono-temporal reference land-cover labeling or those added necessarily to reflect landscape changes, the PXCOV (Product rule with adjustment for cross-COVariance between single-date classification correctness) method was developed previously. However, the use of PXCOV becomes complicated when few or no collocated sample data are available and cross-validation cokriging, a procedure involving non-trivial geostatistical modeling, has to be incurred for estimation of cross-correlation. To overcome PXCOV’s lack of practicality when using mostly non-collocated sample data, this paper presents a simple alternative. It is furnished through stratified approximation of cross-correlation and features combined use of minimum and multiplication operators. Specifically, in this composite method (named Fuzzy+Product), minimum operator (resembling fuzzy set “min” operator and thus named Fuzzy) is applied over no-change pixels stratum where maximum correlation is assumed, while multiplication operator (i.e., product rule named Product) is applied for change pixels stratum where cross-correlation is assumed negligible (i.e., minimum correlation), without having to run cross-validation cokriging as in PXCOV. Studies were undertaken to test the proposed method based on datasets collected previously concerning GlobeLand30 2000 and 2010 land-cover at five sites in China. For each site, five model-training samples (being mostly non-collocated) of equal sizes and one independent model-testing sample (collocated) were used. Logistic regression models fitted with relevant sample data were applied to predict local accuracies in single-date classifications using selected map class occurrence pattern indices quantified in optimized moving windows. The area under the curve (AUC) of the receiver operating characteristic was used for evaluating alternative methods. Empirical results confirmed that method Fuzzy+Product is more accurate than both Fuzzy and Product in general and there are no statistically significant differences between it and PXCOV. This indicates Fuzzy+Product being a method of relative simplicity but reasonable accuracy when reference data are non-collocated or mostly so. Its value is likely best manifested when local and global accuracy characterization in multi-temporal change information (discrete and fractional) is concerned.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3