Sea Clutter Amplitude Prediction Using a Long Short-Term Memory Neural Network

Author:

Ma ,Wu ,Zhang ,Wu ,Jeon ,Tan ,Zhang

Abstract

In the marine environment, shore-based radars play an important role in military surveillance and sensing. Sea clutter is one of the main factors affecting the performance of shore-based radar. Affected by marine environmental factors and radar parameters, the fluctuation law of sea clutter amplitude is very complicated. In the process of training a sea clutter amplitude prediction model, the traditional method updates the model parameters according to the current input data and the parameters in the current model, and cannot utilize the historical information of sea clutter amplitude. It is only possible to learn the short-term variation characteristics of the sea clutter. In order to learn the long-term variation law of sea clutter, a sea clutter prediction system based on the long short-term memory neural network is proposed. Based on sea clutter data collected by IPIX radar, UHF-band radar and S-band radar, the experimental results show that the mean square error of this prediction system is smaller than the traditional prediction methods. The sea clutter suppression signal is extracted by comparing the predicted sea clutter data with the original sea clutter data. The results show that the proposed sea clutter prediction system has a good effect on sea clutter suppression.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3