Influence of Oxygen Vacancy Behaviors in Cooling Process on Semiconductor Gas Sensors: A Numerical Analysis

Author:

Liu Jianqiao,Wang Wanqiu,Zhai Zhaoxia,Jin Guohua,Chen Yuzhen,Hong Wusong,Wu Liting,Gao Fengjiao

Abstract

The influence of oxygen vacancy behaviors during a cooling process in semiconductor gas sensors is discussed by the numerical analysis method based on the gradient-distributed oxygen vacancy model. A diffusion equation is established to describe the behaviors of oxygen vacancies, which follows the effects of diffusion and exclusion in the cooling process. Numerical analysis is introduced to find the accurate solutions of the diffusion equation. The solutions illustrate the oxygen vacancy distribution profiles, which are dependent on the cooling rate as well as the temperature interval of the cooling process. The gas-sensing characteristics of reduced resistance and response are calculated. Both of them, together with oxygen vacancy distribution, show the grain size effects and the re-annealing effect. It is found that the properties of gas sensors can be controlled or adjusted by the designed cooling process. The proposed model provides a possibility for sensor characteristics simulations, which may be beneficial for the design of gas sensors. A quantitative interpretation on the gas-sensing mechanism of semiconductors has been contributed.

Funder

National Natural Science Foundation of China

Liaoning Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3