A Field Pilot Study on Treating Groundwater Contaminated with Sulfolane Using UV/H2O2

Author:

Yu Linlong,Iranmanesh Sobhan,Keir Ian,Achari GopalORCID

Abstract

Sulfolane is an emerging contaminant in the groundwater and soil nearby gas plants, which has attracted much attention from many researchers and regulatory agencies in the past ten years. In this paper, a field pilot-scale ultraviolet (UV)/hydrogen peroxide (H2O2) system was investigated for treating sulfolane contaminated groundwater. Different groundwater, as well as different operational parameters such as influent sulfolane concentration, H2O2 dosage, and water flow rates, were studied. The results showed that a pilot-scale UV/H2O2 system can successfully treat sulfolane contaminated groundwater in the field, although the presence of iron and other groundwater limited the process efficiency. The lowest electrical energy per order of reduction for treating sulfolane in groundwater by using the pilot-scale UV/H2O2 system was 1.4 kWh m−3 order−1. The investigated sulfolane initial concentrations and the water flow rates did not impact the sulfolane degradation. The enhancement of sulfolane degradation in an open reservoir by adding ozone was not observed in this study. Furthermore, an operational cost model was formulated to optimize the dosage of H2O2, and a stepwise procedure was developed to determine the power necessary of the UV unit.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference32 articles.

1. Physicochemical properties of sulfolane

2. Sulfolane Technical Assistance and Evaluation Report;Stewart,2010

3. An investigation of the maximum allowable concentration of sulfolane in surface water;Zhu;Hua Xi Yi Ke Da Xue Xue Bao,1987

4. Effect of sulfolane on behavioral and autonomic thermoregulation in the rat

5. Health Impact Assessment of Sulfolane on Embryonic Development of Zebrafish (Danio rerio)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3