An Improved Transit Signal Priority Strategy for Real-World Signal Controllers that Considers the Number of Bus Arrivals

Author:

Lian PeikunORCID,Wu Yiyuan,Li Zhenlong,Keel Jack,Guo Jiangang,Kang Yaling

Abstract

Active transit signal priority (TSP) is used more conveniently and widely than the other strategies for real-world signal controllers. However, the active TSP strategies of real-world signal controllers use the first-come-first-served rule to respond to any active TSP request and are not effective at responding to the number of bus arrivals. With or without the green extension strategy, the active TSP has little impact on the final green time of priority phase, even in the case where more buses arrive during the priority phase. The reduced green time of early green strategy is relatively large when a bus arrives, and it would be worse when more buses arrive, the active TSP has a big adverse impact on the final green time of the non-priority phase. Therefore, the active TSP strategies of real-world signal controllers cannot handle the downtown intersection where many bus lines converge or where many buses arrive in a signal cycle during the evening rush hour. Traffic engineers need to do much work to optimize the TSP parameters before field application. Consequently, it is necessary to improve the TSP strategy of the real-world signal controllers for the intersections with a lot of bus arrivals. In order to achieve that objective, the authors present the CNOB (cumulative number of buses) TSP strategy based on the Siemens 2070 signal controller. The TSP strategy extends the max call time according to the number of buses in the arrival section when priority phases are active. The TSP strategy truncates the green time according to the number of buses in the storage section when non-priority phases are active. The experiment’s result shows that the CNOB TSP strategy can not only significantly reduce the average delay per person without using TSP optimization but can also reduce the adverse impact on the general vehicles of non-bus-priority approaches for the intersections with a lot of bus arrivals. Additionally, because the system dynamically adjusts, traffic engineers do not need to do much optimization work before the TSP implementation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3