Requirement Assessment of the Relative Spatial Accuracy of a Motion-Constrained GNSS/INS in Shortwave Track Irregularity Measurement

Author:

Zhang QuanORCID,Chen Qijin,Niu XiaojiORCID,Shi Chuang

Abstract

Modern railway track health monitoring requires high accuracy measurements to ensure comfort and safety. Although Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integration has been extended to track geometry measurements to improve the work efficiency, it has been questioned due to its positioning accuracy at the centimeter or millimeter level. We propose the relative spatial accuracy based on the accuracy requirement of track health monitoring. A requirement assessment of the spatial relative accuracy is conducted for shortwave track irregularity measurements based on evaluation indicators and relative accuracy calculations. The threshold values of the relative spatial accuracy that satisfy the constraints of shortwave track irregularity measurements are derived. Motion-constrained GNSS/INS integration is performed to improve the navigation accuracy considering the dynamic characteristics of the track geometry measurement trolley. The results of field tests show that the mean square error and the Allan deviation of the relative position errors of motion-constrained GNSS/INS integration are smaller than 0.67 mm and 0.16 mm, respectively, which indicates that this approach meets the accuracy requirements of shortwave track irregularities, especially vertical irregularities. This work can provide support for the application of GNSS/INS systems in track irregularity measurement.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3