Combined Discharge and Thermo-Salinity Measurements for the Characterization of a Karst Spring System in Southern Italy

Author:

Portoghese IvanORCID,Masciale RitaORCID,Caputo Maria C.,De Carlo Lorenzo,Malcangio DanielaORCID

Abstract

The hydrological monitoring of springs is an auxiliary and indispensable tool that goes alongside investigations in wells to reconstruct a conceptual phenomenological model of an aquifer–groundwater system and its interactions with surface waters. There are manifold ways to carry out this monitoring, but the choice of which way is significant for a correct qualitative and quantitative knowledge of spring systems. The present work focuses on the characterization of the thermo-saline and flow regimes of the Tara spring system along the northern coast of Taranto (southern Italy), where a karst groundwater basin is the major source of the Tara River and the surrounding coastal wetland. A series of measurements was carried out on the spring system to support a technical feasibility study on the possible use of the brackish water of this river to feed a future desalination plant. To estimate the flow rate, a comparison was made between different flow measurement methods in a derivation channel. Through an analysis of the available dataset, the response of the aquifer to the autumn–winter recharge, for which updated hydrologic measurements were not available, is highlighted.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3