Design and Sensitivity Analysis of Hybrid Photovoltaic-Fuel-Cell-Battery System to Supply a Small Community at Saudi NEOM City

Author:

Rezk HegazyORCID,Kanagaraj N.ORCID,Al-Dhaifallah MujahedORCID

Abstract

This research paper aimed to design and present a sensitivity analysis of a hybrid photovoltaic-fuel-cell-battery (PV/FC/B) system to supply a small community for the recently planned grand city NEOM in Saudi Arabia. The location of the city of NEOM is characterized by a high average level of solar irradiance. The average daily horizontal solar radiation is around 5.85 kWh/m2. A detailed feasibility and techno-economic evaluation of a PV/FC/B hybrid energy system were done to supply a daily load demand of 500 kWh (peak-35 kW). The PV array was the main source to meet the load demand. During the surplus periods, the battery was charged using extra energy and powered the electrolyzer for hydrogen production. The produced hydrogen was stored for later use. During the deficit periods, the FC and/or battery supported the PV array to meet the load demand. Two benchmarks, the cost of energy (COE) and net present cost (NPC), were used to identify the best size of the PV/FC/B system. Variation of the tilt angle of the PV array and the derating factor were considered to determine the effect of the performance of the PV/FC/B system’s COE and NPC. The main findings confirmed that a 200 kW PV array, 40 kW FC, 96 batteries, 50 kW converter, 110 kW electrolyzer, and 50 kg hydrogen tank was the best option to supply the load demand. The values of total NPC and COE were $500,823 and $0.126/kWh. The annual excess energy was very sensitive to the declination angle of the PV array. The minimum annual excess energy was achieved at an angle of 30 degrees. It decreased by 75.7% and by 60.6% compared to a horizontal surface and 50 degrees of declination, respectively. To prove the viability of the proposed system, a comparison with grid extension along with a diesel generation system was carried out.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3