Integrated Longitudinal and Lateral Networked Control System Design for Vehicle Platooning

Author:

Latrech Chedia,Chaibet Ahmed,Boukhnifer Moussa,Glaser Sébastien

Abstract

This paper investigates platoon control of vehicles via the wireless communication network. An integrated longitudinal and lateral control approaches for vehicle platooning within a designated lane is proposed. Firstly, the longitudinal control aims to regulate the speed of the follower vehicle on the leading vehicle while maintaining the inter-distance to the desired value which may be chosen proportional to the vehicle speed. Thus, based on Lyapunov candidate function, sufficient stability conditions formulated in BMIs terms are proposed. For the general objective of string stability and robust platoon control to be achieved simultaneously, the obtained controller is complemented by additional conditions established for guaranteeing string stability. Furthermore, constraints such as actuator saturation, and controller constrained information are also considered in control design. Secondly, a multi-model fuzzy controller is developed to handle the vehicle lateral control. Its objective is to maintain the vehicle within the road through steering. The design conditions are strictly expressed in terms of LMIs which can be efficiently solved with available numerical solvers. The effectiveness of the proposed control method is validated under the CarSim software package.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vehicle Platooning-System design, Objectives, Simulation and Field testing;2024 International Conference on Automation and Computation (AUTOCOM);2024-03-14

2. Recent Studies in the Literature on Nonlinear Control of Platoons and Transitional Maneuvers;Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2023-12-31

3. Model-Based Control and Model-Free Control Techniques for Autonomous Vehicles: A Technical Survey;Applied Sciences;2023-05-31

4. Optimized Active Collision Avoidance Algorithm of Intelligent Vehicles;Electronics;2023-05-29

5. A Survey of Intelligent Driving Vehicle Trajectory Tracking Based on Vehicle Dynamics;SAE International Journal of Vehicle Dynamics, Stability, and NVH;2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3