Development of an MCTS Model for Hydrogen Production Optimisation

Author:

Komasilovs Vitalijs1ORCID,Zacepins Aleksejs1ORCID,Kviesis Armands1,Ozols Kaspars2ORCID,Nikulins Arturs2ORCID,Sudars Kaspars2ORCID

Affiliation:

1. Department of Computer Systems, Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela iela 2, LV-3001 Jelgava, Latvia

2. Institute of Electronics and Computer Science, 14 Dzerbenes Street, LV-1006 Riga, Latvia

Abstract

Hydrogen has the potential to revolutionize the energy industry due to its clean-burning and versatile properties. It is the most abundant element in the universe and can be produced through a variety of methods, including electrolysis. The widespread adoption of hydrogen faces various challenges, including the high cost of production; thus, it is important to optimise the production processes. This research focuses on development of models for hydrogen production optimisation based on various external factors and parameters. Models based on electricity prices are developed and compared between different market situations. To run hydrogen production more effectively, it is required to use renewable energy sources for the production process. Adding the solar power component to the economic evaluation model outcome is more positive. The Monte Carlo tree search (MCTS) algorithm is adapted to effectively control the electrolysis process. MCTS schedule optimization was performed for a 24 h time horizon applying two time-resolution settings—1 h and 15 min. The results demonstrate the potential of the MCTS algorithm for finding good schedules for water electrolyser devices by taking into account variable environmental factors. Whereas the MCTS with a 15 min resolution ensures mathematically better results, it requires more computational power to solve the decision tree.

Funder

ERA-NET Project “New technology to produce hydrogen from Renewable Energy Sources based on AI with optimized costs for environmental applications”

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3