Affiliation:
1. Research Institute of Petroleum Exploration and Development, No. 20 Xueyuan Road, Haidian District, Beijing 100083, China
Abstract
Multi-horizontal well hydraulic fracturing is a widely employed and highly effective method for stimulating tight and shale reservoirs. However, most existing studies primarily focus on investigating the impact of intra-well interference on fracture propagation while neglecting the influence of inter-well interference. Here, a multi-well hydraulic-fracture-propagation model is established to examine the effects of inter-well interference on fracture propagation within a multi-well system. In this study, based on the bilinear T-S criterion, the stiffness degradation is used to describe the damage and evolution process of fracture, the coupling process of fluid flow and solid damage and deformation is realized, and the dynamic distribution of inter-fracture flow is realized by using Kirchhoff function on the basis of the cohesive zone method (CZM) finite element model. Finally, the fracture-propagation model of multiple horizontal wells is established. Based on this model, the mechanism of inter-well interference on fracture propagation is studied, and the influence law of Young’s modulus and fracture displacement on fracture propagation in multi-wells is investigated. The results show that the reservoir can be divided into self-influence area, tension area and compression area according to the stress distribution state in the hydraulic fracture propagation of multi-wells. The propagation rate of hydraulic fractures in horizontal wells is significantly accelerated when they propagate to the local tension area generated by the fracture tip of neighboring wells, and rapidly decreases as the hydraulic fractures continue to propagate to the compression area of neighboring wells. Rocks with a lower Young’s modulus tend to be more plastic, forming hydraulic fractures with usually lower fracture lengths and usually larger fracture widths. The hydraulic fracture has an inhibitory effect on the propagation of fractures closer to each other in neighboring wells, and this inhibitory effect gradually increases as the distance decreases. The dominance of the dominant fracture to propagate in the self-influence area gradually decreases under inter-well and intra-well interference. As the dominant fracture propagates into the tension and compression areas of the neighboring well fractures, the feed fluid will show a brief rise and then eventually stabilize. This study quantifies the effect of inter-well interference on fracture propagation and lays the foundation for treatment optimization of small well spacing hydraulic fracturing.
Funder
Key Core Technology Research Projects of PetroChina Company Limited
Research Institute of Petroleum Exploration and Development
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献